22. Bioactive potentials of Inonotus Rickii (Pat.) D.A. Reid from Pune Neeta Jagtap¹, Kiran Ranadive², Pradnya Jagtap³, Nayana Chaudhari⁴, Priya Thopate⁵, Priyanka Jagtap⁶ and Snehal Salunke⁷ ^{1, 4,5, 6&7}Department of Chemistry, P.D.E.A.'s Waghire College, Saswad, Taluka Purandar, District-Pune. ²Department of Botany, P.D.E.A.'s Waghire College, Saswad, Taluka Purandar, District-Pune. ³Department of Pharmacology, P.D.E.A.'s SGRS College, Saswad, Taluka Purandar, District-Pune. #### **Abstract** Inonotus is belongs to Aphyllophorales (Group of wood rotting fungi). It's also considered as a severe rot of the standing tree flora of road side as well as forests. More than 265 records are there of the same on Index Fungorum from which 15 are reported so far from India. This is the first attempt to do the different phytochemical tests of the same fungus. The tests showed very significant results like presence reducing sugars, steroids, flavonoids, monosaccharideand saponin glycosides. Key words: Aphyllophorales, Basidiomycetes, Inonotus, Fungi ## **Introduction:** Aphyllophorales play very important role in the recycling process. *Inonotus* is one of the fungus from the same group of Basidiomycetous fungi. The family Hymenochaetaceae includes more than 34 genera like *Phellinus*, *Hymenochaete* etc. *Inonotus* is one of the most common disease of the tree flora along the road side trees and in the dense forest patches. This genus includes more than 265 species records from World (Index Fungorum 2018). In India there are only 15 reports of the different species. Many a times the fruit body is having anamorphic stage and sometimes may get the telomorphic stage at the same place. Inonotusrickii(Pat.) D.A. Reid, Kew Bulletin 12 (1): 141 (1957) In the present species chlamydospores are abundant in context tissue, thick-walled, dark reddish brown in KOH, negative in Melzer's reagent, irregular in shape, smooth, globose to ellipsoid or often with an elongated cylindric appendage, 14.985 X 12.321µm thick. It was found on dead tree hardwoods and also parasites of *Delonixregia*. The distribution of the same species is wide in United States (Florida, Louisiana, and Arizona) and only in the ptychogastric stage. Its true distribution in the Neotropics is unknown but widespread in the tropics. **Fig.01** A)*Inonotus rickii*: B) a. Conidia (14.985 X 12.321μm) and Sterile hypha (8.325 μm) **Materials and Methods**: #### **Collection and Preservation of the sample** Collection: The sample of *Inonotus* was collected from Pune with sample code WCSKR-02. The specimen was kept in the specimen folder. The crude powder *Inonotus* was then preserved by the standard method. Preservation of samples: During the collection tours the fungal material, mostly dead twigs and wood with fruit bodies were examined using a 3 fold pocket lens (15X) and kept in the zip lock polythene bags as well as some times paper bags. Most of the forms collected were growing saprophytically and their substrates were identified following the latest nomenclature after tentative identification on the spot. The specimen was brought to the laboratory and examined under a stereo-binocular to observe position of the fruit bodies, their gross morphology, shape, size, colour of the fruit body, presence or absence of the appendages etc. The specimen was labeled and deposited in the Department of Botany, Waghire College, Saswad, Taluka-Purandar, District- Pune, Pin-412301 with the WCSKR-02 accession number. The collected material was kept in brown paper folders of size 20 x 15 cms prepared from paper of 29 x 33 cms size with label (Size 16.5 x 7.5 cms) having details: **Photographic Documentation:** The specimen was photographed with the help of Nikon 3200 (SLR) zoom lens camera to get the best result showing all Macro-morphological details of the specimen. Selection of the quality photographs was done by checking its zooming quality. **Camera Lucida Drawing Preparation:** Camera lucida sketches were also made for all materials with mirror type camera lucida. Measurements of the morpho-taxonomic structures like sterile hyphae, spores were made by ocular of ERMA INC, made in Japan and objective micrometer of ERMA TOKYO company and eyepiece micrometer under 10X, 45X and 100X objectives. For fructification, measurements were taken 5-10 times and average values were recorded. **Identification**: Materials were identified up to species level with the aid of standard literature namely Donk MA. (1933), Fiasson JL, Niemela T. (1984), Gilbertson RL. (1976), Gilbertson RL, Ryvarden L. (1986), Gilbertson RL, Wright JE, Monclavo, JM. (2002), Kulkarni S. K. (2012), Pegler DN. (1964), Sharma JR, Das K and Mishra D. (2013), Rayner RW. (1970), Ryvarden L. (1991), Ryvarden L. (2005), /www.fungifromindia.com, www.indexfungorum.org, and www.mycobank.org #### Procedure of extraction: The sample was extracted from the spore powder in different solvent system like water, Ether and Ethanol. All air and sundried samples were subjected to the standard extraction procedure using Soxlet apparatus. The extracted samples were then stored in a bottles. The extracted samples then concentrated by using the simple heating process. These concentrated samples were used for testing the Phytochemical tests as follows. (**Table No. 01, 02 & 03**) ## Table No.01 Phytochemical test of *Inonotus*in different solvent systems | Sr. | TEST Crude (Inonotus powder) | | Ether I | nonotus | Ethanol I | nonotus | Water Inonotus | | | |-----|---|---|--------------------------------------|---|-------------------------------------|-------------------------------------|---|--|---| | No | | Observation | Inference | O In b se r v at io n | ference | Observation | Inference | Observati
on | Inferenc
e | | | | | | | rbohydrates | | 1 | | | | A) | | | | Test for Rec | ducing sugars | | | | | | 1) | Fehlings test | | | | | | | | | | | 1 ml Fehling A
and 1 ml
Fehlings B soln
boil .add equal
volume of test
soln .heat
in boiling water | First yellow
then brick ppt
is observed | Reducing
sugar may be
present | No ppt. | Reducing
sugar
absent | No ppt. | Reducing
sugar
absent | First yellow
then brick
ppt is
observed | Reduci
ng
sugar
may be
present | | 2) | bath for 10 min Bendict test Equal volume of bendicts reagent + test soln.heat in boiling water bath for 5 min soln appears green, yellow red | Red colour
solution | Reducing
sugar may be
present | Red
colour
solution | Reducing
sugar may
be present | Red colour
solution | Reducing
sugar may
be present | Red colour
solution | Reduci
ng
sugar
may be
present | | B) | Test for
Monosaccharide
s | | | | | | | | | | 1) | Barfoeds test Mix equall volume of barfoeds reagent. & test reagent. heat for 1-2 min in boiling water bath &cool . Red ppt observed | Red ppt is
observed | Monosacchar
ide may be
present | No red
ppt | monosace
harides
absent | Red ppt is
observed | Monosace
haride
may be
present | Red ppt is
observed | Monos
acchari
de may
be
present | | C) | Test for Pentose
sugars | | | | | | | | | | 1) | Mix equall
amount of test
soln& HCl. Heat
this mix .add
a crystal of | Red colours is
observed
appears | Pentose
sugar may be
present | Red
colour
appear | Pentose
sugar may
be present | No red
colour
appears | Pentose
sugar
absent | Red colour
appear | Pentose
sugar
may be
present | | | pholoroglucilnol .
Red color
appears | | | | | | | | | | D) | Test for Hexose
sugars | | | | | | | | | | 1) | Tollens phloroglucinol test for galactose mix 2.5ml cone Hel & 4ml 0.5ml phloroglucinol+1 -2ml test soln heat . Yellow red colour . | No yellow to
red colour
observed | Hexose
sugar absent | No yellow
to red
colour
observed | Hexose
sugar
absent | Yellow to
red colour
observed | Hexose
sugar
present | Yellow to
red colour
observed | Hexose
sugar
present | | E) | Test for Non-
Reducing sugars | | | | | | | | | | | |----|--|--|---|---|------------|---------------------------------------|--|--|--|--|--| | | Test soln does
not give response
to fehling &
benedict test | to feh | Give respons
to fehlings &
bendict test | | & reducing | | Non
reducing
sugar
absent | Give
response to
fehling &
bendict test | Non
reducing
sugar
absent | Give
response to
fehling &
bendict test | Non
reducin
g sugar
absent | | F) | Test for non-
Reducing
Polysaccharides
(starch) | | | | | | | | | | | | 1) | Iodine test 3ml test soln +few dropes of dilute iodine soln | Blue colour
does not
appears | | | | Blue
colour
does not
appears | Non
reducing
polysacch
arides
absent | Blue colour
does not
appears | Non
reducing
polysacch
arides
absent | Blue colour
does not
appears | Non
reducin
g
polysac
charide
s | | | | | | | | Test for pr | oteins | | | | absent | | 1) | Biuret test | | | | | 7 234 101 PI | | | | | | | 1) | 3ml test soln
+4% NaoH &few
dropes of 1%
CuSo4 soln
violet or pink
colour appear | No
viole
t
pink
colo
ur
obse
rved | Prote
abse | | | iolet pink
r observed | Proteins
absent | No violet pink
colour observed | Proteins
absent | No violet
pink colour
observed | Protein
s
absent | | 2) | Million test | | | | | | | | | | | | | 3ml test soln +
5ml millon soln
on reagent | No
whit
e ppt | Prote
abse | | No v | white ppt | Proteins
absent | No white ppt | Proteins
absent | No white ppt | Protein
s
absent | | | | | | | | Test for amir | o acids | | 1 | • | | | 1) | Ninhydrin test | | | | | | | | | | | | | 3ml test soln +3
droppes 5%
ninhydrin soln.
heat in boiling
water bath for
10min .Purpal or
bluish colour
appears | No purp le or bluis h colo ur appe ar | Amino
abse | I | | ole or bluish
ur appear | Amino
acid
absent | No purple or
bluish colour
appear | Amino
acid
absent | No purple
or bluish
colour
appear | Amino
acid
absent | | 2) | Test for Cysteine 5ml test soln + few dropes of 40% NaoH +10% lead acetate soln.boil the soln black ppt of lead sulphat is formed | No
blac
k ppt | Amino
abse | | No b | olack ppt | Amino
acid
absent | No black ppt | Amino
acid
absent | No black
ppt | Amino
acid
absent | | | • | | | | | Test for ste | roids | | • | | | | 1) | Salkowski | | | | | | | | | | | | | reaction 2ml extract + 2ml chloroform + 2ml cone.H ₂ SO ₄ Shake well .chloroform layer | No
colo
urati
on | Stero
abse | I | No co | olouration | Steroid
absent | Chloroform
layer appears
red & acid
layer shows
greenish | Steroid
may be
present | No
colouration | Steroid
absent | | | appears red and
acid layer shows
greenish yellow | | | | | fluroscence | | | | |-----|--|---|------------------------------------|---|---|---|---|--|---| | | fluorescence | | | Test for Gly | assidas | | | | | | A) | Test for Cardiac | | | 1 est for Giy | Cosides | | I | | | | ''' | Glycosides | | | | | | | | | | 1) | Test for Deoxysugars 2 ml extracts + glacial acetic acid + 1 drop 5% feCl ₃ + conc. H ₂ SO ₄ redish brown colour appear at the junction of two liquid layer and upper layer appears bluish green | No
colo
urati
on | Cardiac
glycoside
absent | No colouration | Cardiac
glycosid
e absent | No colouration | Cardiac
glycosid
e absent | No
colouration | Cardiae
glycosi
de
absent | | В) | Test for Saponin
Glycoside | | | | | | | | | | 1) | Foam test Shake the drug extract or dry powder vigorously with water.persistant foam observed | No
persi
stent
foam
obse
rved | Saponin
glycoside
absent | No persistent foam
observed | Saponin
glycosid
e absent | No persistent
foam observed | Saponin
glycosid
e absent | Persistent
foam is
observed | Saponi
n
glycosi
de may
be
present | | | Test for | | | | | | | | | | (C) | Cynogenetic
Glycosides | | | | | | | | | | 1) | Grignard reaction or Sodium Picrate test soak a filter paper strip first in 10% picric acid, then in 10% sodium carbonate, dry. In conical flask place moistened powdered drug. Cork it, place it above filter in slit in cork the filter paper turns brick red or maroon. | No
chan
ge
obes
erve
d on
filter
pape
r | Cynogenetic
glycoside
absent | No change
obeserved on filter
paper | Cynogen
etic
glycosid
e absent | No change
obeserved on
filter paper | Cynogen
etic
glycosid
e absent | No change
obeserved
on filter
paper | Cynoge
netic
glycosi
de
absent | | 1) | Dragendroff's test 2-3ml filtrate+few drops Dragendroff's reagent. Orange | no
ppt
form
ed | Alkaloids
absent | No ppt formed | Alkaloid
s absent | No ppt formed | Alkaloid
s absent | No ppt
formed | Alkal
oids
absent | | | brown ppt is
formed | | | | | | | | | |----|---|---|--|------------------------------|--|------------------------------|---|---------------------------------|---| | 2) | Mayer's test 2ml filtrate +Mayer's reagents gives ppt. | no
ppt | Alkaloid
absent | No ppt | Alkaloid
absent | No ppt | Alkaloid
absent | No ppt | Alkal
oid
absent | | | | | Т | est for Tannins & Phe | nolic compo | unds | | | | | 1) | Lead Acetate test 2-3ml lead acetate test solution +test solution gives white ppt. | No
ppt | Tannins & phenolic compounds absent | No ppt | Tannins
&
phenolic
compoun
ds absent | No ppt | Tannins
&
phenolic
compou
nds
absent | No ppt | Tanni ns & pheno lic comp ounds absent | | 2) | Bromine water test 2-3 ml test solution +bromine water. Decolourisation of bromine water | No
deco
louri
satio
n | Tannins &
phenolic
compounds
absent | No decolourisation | Tannins
&
phenolic
compoun
ds absent | No
decolourisation | Tannins & phenolic compou nds absent | No
decolourisa
tion | Tanni ns & pheno lic comp ounds absent | | | | | | Test for Flav | onoids | | | | | | 1) | H ₂ SO ₄ TestOn
addition of
H ₂ SO ₄ flavanones
& flavanodes
dissolve into it &
gives a deep
yellow
solution
.Chalcones &
aurones gives red
or red-bluish
solution.Flavanes
give orange to
red colour. | No
colo
urisa
tion | Flavonoids
absent | No colourisation | Flavonoi
ds absent | Orange to red
colour | Flavonoi
ds may
be
present | Deep
yellow
colour | Flavo
noids
may
be
presen
t | | 2) | Lead Acetate
test
Small amount of
residue + lead
acetate solution.
Yellow ppt. | No
yello
w
ppt. | Flavonoids
absent | No yellow ppt. | Flavonoi
ds absent | Yellow ppt. is
observed | Flavonoi
ds may
be
present | No yellow ppt. | Flavo
noids
absent | | 1) | Catalase To thick sections of drug, H ₂ O ₂ , oxygen gas evolves | O ₂
gas
does
not
evol
ved | Catalase
absent | O2 gas does not
evolved | Catalase
absent | O2 gas does not
evolved | Catalase
absent | O2 gas
does not
evolved | Catala
se
absent | | | I | | | Test for vita | mins | | | 1 | | | 1) | Test for vitamins C (Ascorbic acid) To 2 ml of 2% w/v solution add 2ml of water, 0.1 gm sodium bicarbonate and | Dee p viole t colo ur abse | Ascorbic
acid may be
absent | Deep violet colour
absent | Ascorbic
acid may
be absent | Deep violet
colour absent | Ascorbic
acid may
be
absent | Deep violet
colour
absent | Ascor
bic
acid
may
be
absent | | about | nt | | | | | |--------------------|----|--|--|--|--| | 20 mg ferrous | | | | | | | sulphate. Shake | | | | | | | and allow to | | | | | | | stand; deep violet | | | | | | | colour is produce. | | | | | | | Add | | | | | | | 5ml of 1 M | | | | | | | sulphurie acid. | | | | | | | Colour dissapear | | | | | | ### Table No:02 Phytochemical conclusion | Sr.no | Test | Solvent used | |-------|--------------------|-------------------------------------| | 1 | Reducing Sugars | Ether, Ethanol, Water, Crude powder | | 2 | Monosaccharide | Water, Ethanol, Crude powder | | 3 | Steroids | Ethanol | | 4 | Saponin glycosides | Water | | 5 | Flavanoids | Ethanol, Water | Table No. 03 Phytochemical conclusion:- | Extracts | No. of Phytochemical constituents | |--------------|-----------------------------------| | Ether | 1 | | Ethanol | 4 | | Water | 4 | | Crude powder | 2 | Figure no: 4 No. of phytochemical constituents Fig.02 No. of Phyto-constituents in Inonotus rickii ## **Result and conclusions:** The **Ether extract**:-In ether extracts of *Inonotus* one phytochemical constituents i.e. reducing sugar is present. **Ethanol extract**:-In ethanol extract of *Inonotus* four phytochemical constituents i.e. reducing sugar, steroids, Flavonoids and Monosaccaride are present. **Water extract**: In water extract of *Inonotus* four phytochemical constituents i.e. reducing sugar, monosaccarides, Flavonoids and Saponin Glycosides. The crude sample of *Inonotus* two phytochemical constituents i.e. Reducing sugar and Monosaccharides. Many more such hidden novel properties may be studied like this by different protocols. #### **Acknowledgement:** We are very much thankful to Hon. Principal **Dr. N.L.Ghorpade**, Waghire College Saswad and Hon. Principal **Dr. R.Y. Patil**, SGRS College of Pharmacy, for their kind permission to conduct the experiments for this work. At the outset we would like to thank **Prof. Dhorge S.M**. Head Department of Chemistry Waghire college Saswad, **Prof. Ganesh Nigade** and **Prof. Vaibhav Shilimkar from SGRS college of Pharmacy Saswad**, for their valuable guidance during this work. We would like to express our deep sense of gratitude towards **Miss. Bhagyashree Vyapari**, **Miss. Prachali Chavan**, **Miss. Bhakti Lonkar** and **Miss. Pooja Pisal** for the actual experimentation work in the lab. We would like to extend our sincere thanks to all the staff members of Department of Chemistry and our Lab Assistant **Mr. Ganesh Bhosale** for providing help during our project work. We are happy to take this opportunity to express our gratitude to those who have been helpful to us in completing this project report. Lastly, we would like to thank our parents, friends and well-wishers who have encouraged us to do this research work and all those who contributed directly or indirectly in completing this project to which we are obliged. #### References :- - 1. **Donk MA.** (1933) Revision der Niederlandischen *Homobasidiomycete. Aphyllophoraceae*. Meded. Bot. Mus. Herb. Utrecht 9: 1-278. - 2. **Fiasson JL, Niemela T.** (1984) The Hymenochaetales: a revision of the European poroid taxa. Karstenia 24, 14–28. - 3. **Gilbertson RL.** (1976) The genus *Inonotus* (Aphyllophorales, Hymenochaetaceae) in Arizona. Mem. N.Y. Bot. Gard. 28, 67–85. - 4. **Gilbertson RL, Ryvarden L.** (1986) North American Polypores-1, Fungiflora, Oslo. 434 p. - Gilbertson RL, Wright JE, Monclavo, JM. (2002) *Inonotus* s.l. in Argentina. Morphology, cultural characters and molecular analyses. Mycological Progress 1, 299–313. - 6. **Kulkarni S. K.** (2012) Handbook Of Experimental Pharmacology, Vallabh Prakashan. - 7. **Pegler DN.** (1964) A survey of the genus *Inonotus* (Polyporaceae). Transactions of the British Mycological Society 47(2), 175–195. - 8. **Ranadive, K.R.** (2014) Eight new records of poroid fungi from Western Ghats of Pune district (Maharashtra) Kavaka 42:29-33. - 9. Ranadive K.R., Jite P.K., Ranade V.D., Vaidya J.G.(2013) Flora of Aphyllophorales from Pune district part I. Journal on New Biological Reports 2(3): 188-227 (2013) - 10. **Sharma JR, Das K and Mishra D.**(2013) The genus *Inonotus* and its related species in India. Mycosphere 4(4), 809–818, Doi 10.5943/mycosphere/4/4/16 - 11. **Rayner RW.**(1970) A mycological colour chart. Commonwealth Mycological Institute, Kew, 9 plates, 34 p. - 12. **Ryvarden L.**(1991) Genera of polypores. Nomenclature and taxonomy. Fungiflora, Oslo. 363 p. - 13. **Ryvarden L.** (2005) The genus *Inonotus*, a synopsis. Synopsis Fungorum 21, 149 p. - 14. http://www.fungifromindia.com/fungiFromIndia/buildPage.php?page=home - 15. http://www.indexfungorum.org/names/names.asp - 16. http://www.mycobank.org/defaultinfo.aspx?page=home